University of Padova
Department of Ophthalmology

Peripapillary Microperimetry and Glaucoma

Edoardo Midena, MD
Professor of Ophthalmology and Visual Sciences
INTRODUCTION

Glaucoma is an optic neuropathy characterized by a specific and progressive injury to retinal nerve fiber layer (RNFL). Early detection and prevention of RNFL glaucomatous damage is mandatory because RNFL injury is largely irreversible. RNFL damage has been shown to precede visual field loss, therefore RNFL morphologic and functional evaluation is essential in detecting and monitoring glaucoma.

The aim of this study was: to evaluate the role of peripapillary microperimetry in detecting RNFL functional damage in glaucomatous eyes.
88 EYES (46 SUBJECTS):
- 35 glaucomatous eyes.
- 31 ocular hypertension eyes (OH)*.
- 24 matched control eyes.

MEAN AGE: 59.3 ± 14.7 years (range 18-87 yrs)

VISUAL ACUITY (ETDRS charts): from 20/40 to 20/20.

VISUAL FIELD TESTING performed by Swedish Interactive Thresholding Algorithm (SITA) Standard 24-2 perimetry (Carl Zeiss Meditec Inc., USA) in patients with ocular hypertension and glaucoma.

OPTICAL COHERENCE TOMOGRAPHY performed by Fast RNFL Thickness (3.4) in 12 sectors, in patients with ocular hypertension, glaucoma and in matched control.

MICROPERIMETRY (MP1):

- Peripapillary grid:
 - Fixation target: cross 1
 - Stimuli size: Goldmann III
 - Threshold pattern: 4-2-1
 - Starting stimulus attenuation: 16 dB
 - Stimuli number in each radial direction: 4
 - First stimulus distance from optic disk head: 1
 - Distance between stimuli: 2
RESULTS

- **At OCT analysis**: significant differences in all retinal sectors \((P<0.0001) \) between normal and OH vs glaucoma group were found, whereas between normal vs OH group the differences were statistically significant just in sectors 3, 4, 5, 6 and 7 \((P<0.0001) \).

- **Peripapillary microperimetric data analysis showed**:

<table>
<thead>
<tr>
<th></th>
<th>Normal</th>
<th>OH</th>
<th>Glaucoma</th>
</tr>
</thead>
<tbody>
<tr>
<td>dB</td>
<td>19.2 ± 1.8</td>
<td>17.5 ± 4.2</td>
<td>10.1 ± 6.9</td>
</tr>
</tbody>
</table>

- **Progressive, significant reduction of peripapillary sensitivity** was documented in all retinal sectors in glaucomatous eyes \((P<0.0001) \) and in sectors 1-2 and 7 in OH eyes \((P<0.0001) \) vs control eyes.
The differences of sensitivity (dB) and thickness (micron) mean measurement among the 3 diagnostic groups (glaucoma, OH and normal subject) were evaluated by 2-way analysis of variance (group x retinal sector) with repeated measures on one factor (retinal sector).

Scheffe’s test was used for post-hoc multiple comparisons.

Receiver operating characteristic curves (ROC) were traced for both instruments (microperimetry and OCT) to assess their ability to differentiate ocular hypertension or glaucoma eyes from normal eyes. The best combination of sensitivity and specificity in each retinal sector was detected and data from both instrument were plotted in the same chart.

In all statistical analyses, p<0.05 was considered statistically significant. Statistical analyses were performed by SAS® v.8.2 Statistical package on personal computer.
Comparison among sensitivity profiles: ANOVA with repeated measures, $F_{[22,814]}=3.06$, $p<0.0001$

In all retinal sectors Glaucoma group provide lower sensitivity mean values than the other two groups.

- Sectors in which OH group mean values are significantly ($p<0.05$) lower than normal ones.
OCT measurements
Peripapillary thickness profile by retinal sector and group of patients
(mean values)

Comparison among thickness profiles: ANOVA with repeated measures, $F_{[22,913]}=9.74$, \(p<0.0001 \)
In all retinal sectors glaucoma group provide lower thickness mean values than the other two groups

- Sectors in which OH group mean values are significantly (\(p<0.05 \)) lower than normal ones
Peripapillary evaluation
Best tradeoff between sensitivity (ocular hypertension) and specificity (normality) for each of 12 retinal sectors
Peripapillary evaluation
Best combination of sensitivity (glaucoma) and specificity (normality) for each of 12 retinal sectors

![Graph showing sensitivity vs specificity for OCT and Microperimetry](image-url)
DISCUSSION

OUR DATA:

❖ **CONFIRM** the progressive specific reduction in thickness of peripapillary RNFL with progressive glaucomatous damage (normal vs OH vs glaucoma) documented by peripapillary OCT.

❖ **DOCUMENT** the loss of peripapillary sensibility of RNFL quantified with peripapillary microperimetry in OHT and glaucomatous vs control eyes.
● **REVEAL** that in glaucomatous eyes microperimetry data are more sensitive than OCT in identify pathologic subjects.

● **SHOW** that peripapillary microperimetry may be used to diagnose and monitor RNFL damage, not only in glaucomatous but also (and more important) in OH eyes.
REFERENCES

